Models of liquid mixtures : Structure , dynamics , and properties *
نویسنده
چکیده
Models of the structure and properties of liquid mixtures are outlined. The main focus is on quasichemical models for the modeling of supramolecular ordering in mixtures, self-organized by H-bonds, leading to a unified description of their physicochemical properties. Models of polyvariable supramolecular species are discussed with respect to structure and composition of the mixtures, taking into account the cooperativity of H-bonding, and leading to a description of electric (dipole moment) and optic (polarizability) properties. We analyze the interrelations of thermodynamic functions (Gibbs energy, enthalpy, entropy), dielectric (permittivity) and optical properties (refractive index and its fluctuation derivatives, defining Rayleigh light scattering) of nonideal mixtures as well as the microscopic characteristics of the aggregates. Methods are developed in order to obtain both integral and differential parameters of aggregation. Models for the description of supramolecular reorganization, intramolecular transitions, and energy transfer during molecular thermal motion as well as fluctuation and relaxation phenomena are considered. Applications both to liquids and mixtures are outlined. The supramolecular assemblies in liquids with long-range molecular correlations are established. Macroscopic manifestations of the supramolecular organization in the properties of liquids are characterized.
منابع مشابه
Determination of the Rheological Properties of Hydroxyl Terminated Polybutadiene (HTPB) Mixtures With Energetic Materials and Presenting Empricial Models
Rheological Properties Such as Viscosity (η), Shear Stress (τ), and Torque (M) of the mixtures of (HTPB) with Octagon (HMX), Hexogen (RDX), and 2, 6 Diamino-4-Phenyl-1, 3, 5 Triazine (DAPTA) mixtures were measured. The experimental design was arranged for three factors at two levels (High and low levels). Temperature of the mixture (°C), Speed of the stirrer (rpm), Mixing Time (minutes) have be...
متن کاملCompressed Liquid Densities for Binary Mixtures at Temperatures from 280- 440K at Pressures up to 200 MPa
A method for predicting liquid densities of binary mixtures from heat of vaporization and liquid densityat boiling point temperature (ΔHvap and n b ρ ) as scaling constants, is presented. B2(T) follows a promisingcorresponding-states principle. Calculation of α(T) and b(T), the two other temperature-dependentconstants of the equation of state, are made possible by scaling. As a result ΔHvap and...
متن کاملModeling the Surface Tension and the Interface of Ten Selected Liquid Mixtures: Correlation, Prediction, and the Influence of Using Partial Molar Volume
This work investigates the modeling of the surface tension and the interface of liquid mixtures. Nine binary liquid mixtures of (DMSO+alcohols), (2-Propanol+2,2,4-trimethylpentane), (Tetrahydrofuran+2-Propanol), (Tetrahydrofuran+2,2,4-trimethylpentane), and (ethano+glycerol) are considered. Additionally, one ternary liquid mixture of (Tetrahydrofuran+2-Propanol+2,2,4-trimethylpenta...
متن کاملAn Analytical Equation of State for Saturated Liquid Refrigerant Ternary Mixtures
In this work an analytical equation of state has been employed to calculate the PVT properties ofternary refrigerant mixtures. The theoretical EoS is that of Ihm, Song and Mason, which is based onstatistical-mechanical perturbation theory, and the two constants are enthalpy of vaporization ΔHvapand molar density ρnb, both at the normal boiling temperature. The following three temperaturedepende...
متن کاملVLE Properties from ISM Equation of State: Application to Pure and Mixture
In this paper, the vapor-liquid equilibrium (VLE) properties of polar and nonpolar fluids are modeled by the use of a statistically-based equation of state (EOS). The equation of state used in this work is that of Ihm-Song-Mason (ISM) EOS. An alternative approach is to revise the isothermal integration on liquid. In this respect, a temperature-dependent revision factor b (T) is introduced to th...
متن کامل